#OpenCV 3.0.0
#Raspberry Pi 2, Jessie
#Must have an image in the same directory as this program.
#Enter the following on the command line:
#$python brightspot.py --image name.jpg --radius 21 #radius must be odd number
### Import the necessary packages
import numpy as np
import argparse
import cv2
### Construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", help = "path to the image file")
ap.add_argument("-r", "--radius", type = int,
help = "radius of Gaussian blur; must be odd")
args = vars(ap.parse_args())
### Load the image
image = cv2.imread(args["image"]) #load the image
### Resize the image (may not be necessary if your images is already a reasonable size).
r = 500.0 / image.shape[1] #calculate r, ratio of new width to old width
dim = (500, int(image.shape[0] * r)) #dimension = x pixels by r times the height to keep aspect ratio
image = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
### Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #convert to gray
### Apply a Gaussian blur to the image
gray = cv2.GaussianBlur(gray, (args["radius"], args["radius"]), 0)
### Find the darkest and brightest region
(minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(gray)
### Draw circles around the darkesst and brightest region
cv2.circle(image, maxLoc, args["radius"], (0, 0, 255), 2) #draw a circle around the bright area
cv2.circle(image, minLoc, args["radius"], (0, 255, 0), 2) #draw a circle around the dark area
### Display the results to the screen
cv2.imshow("Gray", gray)
cv2.imshow("Robust", image)
cv2.waitKey(0)